Pleriminary DATA SHEET

CFORTH-FE-100BX-D Fast Ethernet SFP (Small Form Pluggable) Tx1550nm/Rx1310nm Bi-directional Transceiver

CFORTH-FE-100BX-D Overview

CFORTH-FE-100BX-D SFP-BIDI optical transceivers are based on IEEE 802.3ah 100Base-BX standard and provide a quick and reliable interface for the Fast Ethernet application. In addition, they comply with the Small Form Factor Pluggable Multi Sourcing Agreement (MSA) and SFF-8472.

Product Features

- Up to 125 MBd bi-directional data links
- Single LC connector
- Compliant with Fast Ethernet standard
- Compliant with IEEE 802.3ah 100Base-BX
- Compliant with SFP MSA
- Hot-pluggable SFP footprint
- Built-in digital diagnostic functions
- 1550nm FP laser transmitter
- Up to 20km on 9/125um SMF
- Single power supply 3.3V
- RoHS Compliance
- Class 1 laser product complies with EN 60825-1
- Operating temperature range: 0° to 70° .

Applications

• Fast Ethernet

Ordering Information

Part Number	Description
CFORTH-FE-100BX-D	Fast Ethernet, SFP-BIDI, Single LC Connector, Tx1550nm/Rx1310nm, 10-20KM

CFORTH-FE-100BX-D Specifications Rev. D00B

General Specifications								
Parameter	Symbol	Min	Тур	Max	Unit	Remarks		
Data Rate	DR		125		MBd	IEEE 802.3		
Bit Error Rate	BER			10 ⁻¹²				
Operating Temperature	T _{OP}	0		70	°C	Case temperature		
Storage Temperature	T _{STO}	- 40		85	°C	Ambient temperature		
Supply Current	I_S		150	250	mA	For electrical power interface		
Input Voltage	V _{CC}	3	3.3	3.6	V			
Maximum Voltage	V_{MAX}	- 0.5		4	V	For electrical power interface		

Optical Characteristics – Transmitter

 V_{cc} =3V to 3.6V, T_c =0C to 70C

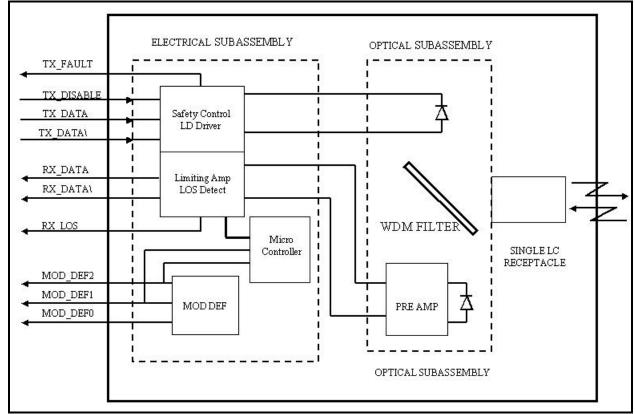
Parameter	Symbol	Min	Тур	Max	Unit	Remarks
Output Optical Power	P _{TX}	- 14		- 8	dBm	Class 1 Product
Optical Center Wavelength	λ_{C}	1470	1550	1570	nm	
Extinction Ratio	ER	9			dB	
Spectral Width (RMS)	$\Delta\lambda$			3	nm	
Optical Rise/Fall Time (20% - 80%)	T _{RF_IN}		1	2	ns	
Relative Intensity Noise	RIN			- 120	dB/Hz	

Optical Characteristics – Receiver

 $V_{cc}=3V$ to 3.6V, $T_c=0$ C to 70 C

Parameter	Symbol	Min	Тур	Max	Unit	Remarks
Optical Receiver Power	P _{RX}			0	dBm	Average
Optical Center Wavelength	λ_{C}	1260		1360	nm	
Receiver Sensitivity	R_{X_SEN}			- 32	dBm	
Optical Return Loss	ORL	14			dB	
Optical Isolation	ISO			-40	dB	
Loss of Signal-Asserted	P _{LOS_A}	- 45			dBm	
Loss of Signal-Deasserted	P _{LOS_D}			- 32	dBm	
Loss of Signal-Hysteresis		0.5			dB	

Electrical Characteristics – Transmitter


 $V_{cc}=3V$ to 3.6V, $T_c=0$ C to 70 C

Parameter	Symbol	Min	Тур	Max	Unit	Remarks
Input differential impedance	R _{IN}		100		Ω	Non condensing
Single ended data input swing	V _{IN_PP}	250		1200	mV	
Transmit disable voltage	V _D	V _{CC} -1.3		V _{CC}	V	
Transmit enable voltage	V_{EN}	V_{EE}		V_{EE} +0.8	V	
Transmit disable assert time				10	us	

Electrical Characteristics – Receiver

V_{cc}=3V to 3.6V, T_c=0 \mathcal{C} to 70 \mathcal{C}

Parameter	Symbol	Min	Түр	Max	Unit	Remarks
Single ended data output swing	V _{OUT_PP}	300	400	800	mV	
Data output rise/fall time (20%-80%)	T_R			300	ps	
LOS Fault	V_{LOS_Fault}	V _{CC} -0.5		V_{CC_HOST}	V	
LOS Normal	V_{LOS_normal}	V_{EE}		V _{EE} +0.5	V	

Block Diagram of Transceiver

Transmitter Section

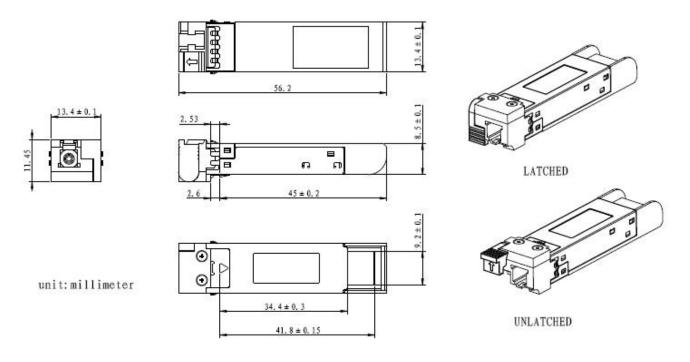
The FP driver accept differential input data and provide bias and modulation currents for driving a laser. An automatic power-control (APC) feedback loop is incorporated to maintain a constant average optical power. 1550 nm FP in an eye safe optical subassembly (OSA) mates to the fiber cable.

TX_DISABLE

The TX_DISABLE signal is high (TTL logic "1") to turn off the laser output. The laser will turn on within 1ms when TX_DISABLE is low (TTL logic "0").

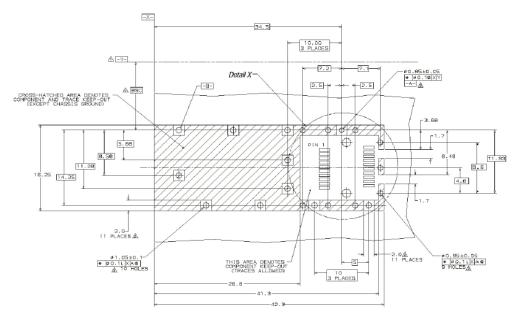
TX_FAULT

When the TX_FAULT signal is high, output indicates a laser fault of some kind. Low indicates normal operation.


Receiver Section

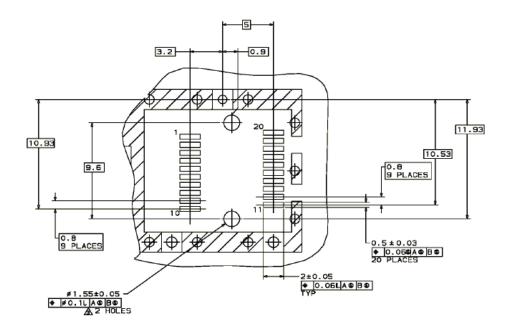
The receiver utilizes a PIN detector integrated with a trans-impedance preamplifier in an OSA. This OSA is connected to a Limiting Amplifier which providing post-amplification quantization, and optical signal detection. The limiting Amplifier is AC-coupled to the transimpedance amplifier, with internal 100Ω differential termination.

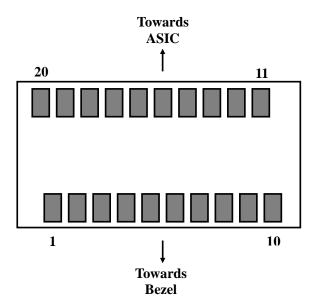
Receive Loss (RX_LOS)

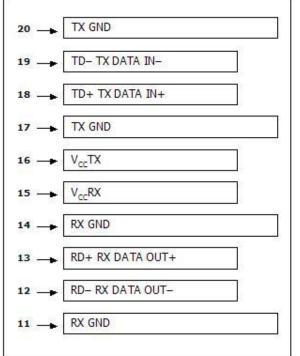

The RX_LOS is high (logic "1") when there is no incoming light from the companion transceiver. This signal is normally used by the system for the diagnostic purpose. The signal is operated in TTL level.

Dimensions

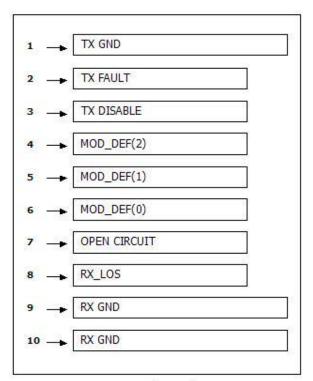
ALL DIMENSIONS ARE \pm 0.2mm UNLESS OTHERWISE SPECIFIED UNIT: mm


PCB Layout Recommendation




Datum and Basic Dimension Established by Customer

Rads and Vias are Chassis Ground, 11 Places


A Through Holes are Unplated

Bottom of Board

Pin Assignment

PIN #	Symbol	Description	Remarks		
1 V _{EET}	Transmitter ground (common with receiver ground)	Circuit ground is isolated			
I VEET		Transmitter ground (common with receiver ground)	from chassis ground		
2	T _{FAULT}	Transmitter Fault. Not supported			
3	T _{DIS}	Transmitter Disable. Laser output disable on high or open	Disabled: T _{DIS} >2V or open		
J	I DIS	Tanshitter Disable. Laser output disable of high of open	Enabled: T _{DIS} <0.8V		
4	MOD_DEF (2)	Module Definition 2. Data line for serial ID	Should Be pulled up with		
5	MOD_DEF (1)	Module Definition 1. Clock line for serial ID	4.7k – 10k ohm on host		
5	,		— board to a voltage between		
6	MOD_DEF (0)	Module Definition 0. Grounded within the module	2V and 3.6V		
7	Rate Select	No connection required			
8	LOS	Loss of Signal indication. Logic 0 indicates normal operation	LOS is open collector output		
9	V _{EER}	Receiver ground (common with transmitter ground)	Cinquit ground is isolated		
10	V _{EER}	Receiver ground (common with transmitter ground)	Circuit ground is isolated		
11	V _{EER}	Receiver ground (common with transmitter ground)	from chassis ground		
12	RD-	Receiver Inverted DATA out. AC coupled			
13	RD+	Receiver Non-inverted DATA out. AC coupled			
14	V _{EER}	Receiver ground (common with transmitter ground)	Circuit ground is isolated		
1 -		Dession server suggit	from chassis ground		
15	V _{CCR}	Receiver power supply			
16	V _{CCT}	Transmitter power supply			
17	V_{EET}	Transmitter ground (common with receiver ground)	Circuit ground is connected to chassis ground		
18	TD+	Transmitter Non-Inverted DATA in. AC coupled			
19	TD-	Transmitter Inverted DATA in. AC coupled			
20	V _{EET}	Transmitter ground (common with receiver ground)	Circuit ground is connected to chassis ground		

References

1. IEEE standard 802.3. IEEE Standard Department, 2005.

2. Small Form Factor Pluggable (SFP) Transceiver Multi-Source Agreement (MSA), September 2000.